This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SYNTHESIS OF NOVEL SULPHONAMIDES AND EVALUATION OF THEIR ANTIBACTERIAL EFFICACY

H. S. Patel^a; H. J. Mistry^a

^a Sardar Patel University, Vallabh Vidyanagar, Gujarat, India

Online publication date: 16 August 2010

To cite this Article Patel, H. S. and Mistry, H. J.(2004) 'SYNTHESIS OF NOVEL SULPHONAMIDES AND EVALUATION OF THEIR ANTIBACTERIAL EFFICACY', Phosphorus, Sulfur, and Silicon and the Related Elements, 179: 6, 1085 - 1093

To link to this Article: DOI: 10.1080/10426500490459704 URL: http://dx.doi.org/10.1080/10426500490459704

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 179:1085-1093, 2004

Copyright © Taylor & Francis Inc. ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500490459704

SYNTHESIS OF NOVEL SULPHONAMIDES AND EVALUATION OF THEIR ANTIBACTERIAL EFFICACY

H. S. Patel and H. J. Mistry Sardar Patel University, Vallabh Vidyanagar, Gujarat, India (Received August 26, 2003; accepted October 9, 2003)

4-(4'-sulphanilyl)-1-phenyl pipearzine (2) has been prepared by ther reaction of N-acetyl sulphanilyl chloride (ASC) with 1-phenyl piperazine followed by the hydrolysis of the product by ethanolic HCl. The hydrolyze product on facile condensation reaction with aromatic aldehydes yields Schiff bases/anils/azomethines (3a-h). These anils on cyclo condensation reaction with chloro acetyl chloride and thio glycolic acid (mercapto acetic acid) yields 2-azetidinones and 4-thiazolidinones respectively. Biological screening of the prepared compounds have been screened on some strains of bacteria.

Keywords: 2-Azetidinones; 4-thiazoidinones; cyclo-condensation reaction; facile condensation; N-acetyl sulphanilyl chloride

The development of sulphonamides is one of the most fascinating and informative fields in medicinal chemistry, highlighting the roles of skillful planning and serendipity in drug research. The discovery of sulphonamide marked the beginning of the chemotherapeutic era by making possible a direct attack on microbial infections. Sulphonamide antibacterials continued to be used because they are effective, inexpensive and free of super infection problems of the broad spectrum antibiotics.

As a part of surge of interest in heterocycles that have been explored for developing pharmaceutically important molecules 4-thiazolidinones^{3–5} and 2-azetidinones^{6–9} have played an important role in medicinal chemistry. Moreover, they have been studied extensively because of their ready accessibility, diverse chemical reactivity, and broad spectrum of biological activities.

We thank Dr. R. M. Pael, head of the Department of Chemistry, for providing laboratory facilities.

Address correspondence to H. S. Patel, Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India. E-mail: dr_hspatel@yahoo.co.in

Also, piperazine derivatives plays pivotal role in medicinal chemistry due to its application in the therapy of functional diseases. ¹⁰ During the past years considerable evidence has been accumulated to demonstrate the efficiency of substituted 2-azetidinones, 4-thiazolidinones, piperazine derivatives, and sulphonamides. ^{11–13}

Keeping in view of biological importance of these groups, we replace them by piperazine moiety at N⁴-position of sulphanilamide and 2azetidinone/4-thiazolidinone at N¹-position in sulphanilamide and our approach clearly shows the biological importance of the coupled products. The research work is scanned in Scheme 1.

ANTIMICROBIAL ACTIVITY

Antibacterial Activity

Antibacterial activities of all the compounds were studied against Gram positive bacteria (Bacillus subtillis and staphylococcus aureus) and Gram negative bacteria (E. coli and Salmonella typhi) at a concentration of $50 \mu g/ml$ by agar cup plate method. ¹⁴ Methanol system was used as control in this method. Under similar conditions usinf penicillin and sulphanilamide as a standard comparison carried out control experiment. The area of inhibition of zone is measured in centimeters. Compounds **4c**, **4d**, **4h**, **5b**, **5d**, and **5f** were found more active against the above microbes. Other compounds found to be less or moderate active than the standards (Tables I and II).

TABLE I Antibacterial Activity of Compounds 4a-h

		Zone of Inh	ibition	
	G	ram +ve	Gram -	-ve
Compounds	Bacillus subtillis	Staphyloccous aureus	Salmonella typhi	E.coli.
4a	54	60	43	65
4b	45	67	52	69
4c	70	78	78	62
4d	82	72	68	78
4e	45	65	43	75
4f	65	60	62	49
4g	68	55	68	58
4h	80	70	74	67
Penicillin	85	65	75	73
Sulphanilamide	78	75	82	69

SCHEME 1

EXPERIMENTAL

Melting points were determined in open capillary tubes and are uncorrected. The IR spectra were recorded in KBr pellets on a Nicolet 400D spectrometer and $^1\mathrm{H}$ NMR spectra in CDCl $_3$ on Hitachi R-1500, 60 MHz spectrometer using TMS as an internal standard. The required N-acetyl

		Zone of Inh	ibition	
	G	ram +ve	Gram –	-ve
Compounds	Bacillus subtillis	Staphyloccous aureus	Salmonella typhi	E.coli.
5a	55	67	67	54
5b	80	70	75	69
5c	76	56	67	57
5d	68	77	75	78
5 e	65	78	80	67
5 f	64	70	80	77
5g	55	59	65	70
5h	68	61	70	80
Sulphanilamide	78	75	82	69

TABLE II Antibacterial Activity of Compounds 5a-h

sulphanilyl chloride (ASC) was prepared by reported method.¹⁵ All chemicals used were of laboratory grade.

Preparation of 4-(4'-acetylaminobenzene Sulphonyl)-1-phenyl Piperazine (1)

General Procedure

1-Phenyl piperazine (0.05 mmol) was dissolved in mixture of 40 ml anhydrous acetone and 1 ml of dry pyridine in a 250 ml flask, and 11.67 g (0.05 mmol) of pure ASC slowly was added. Sodium bicarbonate was added as an acid acceptor. The reaction mixture was set aside overnight and almost pure 4-(4'-acetylaminobenzene sulphonyl)-1-phenyl piperazine (1) was filtered off, washed with cold water, and air dried. It was then recrystallized from methylated spirit to give white product (1) in 70% yield.

Preparation of 4-(4'-sulphanilyl)-1-phenyl Piperazine (2)

General Procedure

4-(4'-Acetylaminobenzene sulphonyl)-1-phenyl piperazine (1) was hydrolyzed by refluxing with 75 ml of ethanol containing 15 ml of concentrated HCl for 4–5 h. It was then poured into ice-cold water and finally made just alkaline with liq. ammonia. The resultant product 4-(4'-sulphanilyl)-1-phenyl piperazine (2) was filtered off, washed with water, and air dried. It was then recrystallized from ethanol to give product (2) in 65% yield.

Preparation of Schiff Bases (3a-h)

General Procedure

A mixture of equimolar amount (0.01 mmol) of 4-(4'-sulphanilyl)-1-phenyl piperazine (2) and the substituted benzaldehydes in ethanol (40 ml) and piperidine (0.3 ml) was refluxed for 5 h in a water bath. The reaction mixture was concentrated, cooled, and poured into water; the solid obtained was filtered and recrystallized from ethanol to give white Schiff base (3a-h). It was obtained in 60–65% yield.

Preparation of 2-Azetidinones (4a-h)

General Procedure

A mixture of Schiff base (**3a-h**) (0.002 mmol) and triethyl amine (TEA) (0.004 mmol) was dissolved in 1,4-dioxane (50 ml), cooled, and stirred. To this well-stirred cooled solution chloro acetyl chloride (0.004 mmol) was added drop wise within a period of 20 min. The reaction mixture was then stirred for an additional 3 h and left at room temperature for 48 h. The resultant mixture was concentrated, cooled, poured into ice cold water, then air dried. The product thus obtained was purified by column chromatography over silica gel using 30% ethyl acetate: 70% benzene as eluent. Recrystallization from ether/n-hexane gave 2-azetidinones (**4a-h**), which were obtained in 55–60% yield.

Preparation of 4-Thiazolidinones (5a-h)

General Procedure

A mixture of Schiff bases (**3a-h**) (0.01 mmol) in THF (30 ml) and mercapto acetic acid (0.01 mmol) with a pinch of anhydrous $ZnCl_2$ was refluxed for 12 h in an oil bath. The solvent was then removed to get a residue, which was dissolved in benzene and passed through a column of silica gel using benzene: chloroform (8:2, v/v) mixture as eluent. The eluate was concentrated and the product crystallized from alcohol (50–60% yield).

All the compounds [(**4a-h**) and (**5a-h**)] were characterized by analytical and spectral data (Tables III and IV) of the compounds is assigned in Scheme 1.

RESULTS AND DISCUSSION

N-acetyl sulphanilyl chloride (ASC) was reacted with 1-phenyl piperazine to give 4-(4'-acetylaminobenzene sulphonyl)-1-phenyl piperazine

TABLE III Analytical and Spectral Data of Compounds 4a-h

	Molecular	Yield	Ā	6	% Analysis found(calcd.)	ound(calcd.	· ·	
Compounds	formula	(%)	(O _o)	2%C	2	N%	S%	$\mathrm{PMR}(\delta,\mathrm{ppm})$
4a	$\mathrm{C}_{25}\mathrm{H}_{24}\mathrm{N}_3\mathrm{O}_3\mathrm{SCI}$	65	162	62.0	4.95	8.70	09.9	2.2-3.2 (8H, t, 4CH ₂),
				[62.3]	[4.98]	[8.72]	[6.65]	6.2–7.8 (15H, m + d, aromatic, C_4H)
4b	$\mathrm{C}_{25}\mathrm{H}_{24}\mathrm{N}_3\mathrm{O}_4\mathrm{SCI}$	53	158	0.09	4.80	8.80	6.40	$9.2(1\mathrm{H,d},\mathrm{G_3H}) \ 2.2-3.2(8\mathrm{H,t},4\mathrm{CH_2}),$
				[60.3]	[4.82]	[8.84]	[6.43]	$6.2-7.8 (14H, m + d, aromatic, C_4H)$
								9.2 (1H, d, C_3H)
4c	$\mathrm{C}_{26}\mathrm{H}_{25}\mathrm{N}_{3}\mathrm{O}_{3}\mathrm{SCI}$	09	145	62.5	5.20	8.45	6.45	$2.2-3.2 (8H, t, 4CH_2),$
				[63.0]	[5.24]	[8.48]	[6.46]	$6.2-7.8 (14H, m + d, aromatic, C_4H)$
								$9.2 (1H, d, C_3H)$
4d	$\mathrm{C}_{26}\mathrm{H}_{26}\mathrm{N}_3\mathrm{O}_4\mathrm{SCI}$	56	170	60.5	5.05	8.20	6.25	$2.7 (3H, s, OCH_3)$ $2.2-3.2 (8H, t, 4CH_2),$
				[61.0]	[5.08]	[8.27]	[6.26]	$6.2-7.8 (14H, m + d, aromatic, C_4H)$
								$9.2 (1H, d, C_3H)$
4e	$\mathrm{C}_{25}\mathrm{H}_{24}\mathrm{N}_3\mathrm{O}_4\mathrm{SCI}$	49	185	0.09	4.80	8.40	6.40	$1.3 (3H, s, CH_3)$ $2.2-3.2 (8H, t, 4CH_9)$,
				[60.3]	[4.82]	[8.44]	[6.43]	6.2–7.8 (14H, m + d, aromatic, C_4H)
								$9.2 (1H, d, C_3H)$
4f	$\mathrm{C}_{26}\mathrm{H}_{26}\mathrm{N}_3\mathrm{O}_5\mathrm{SCI}$	48	135	59.0	4.90	7.95	6.05	3.5 (1H, s, OH) $2.2-3.2 (8H, t, 4CH_2)$,
				[59.2]	[4.93]	[2.96]	[6.07]	6.2–7.8 (13H, m + d, aromatic, C_4H)
								$9.2 (1H, d, C_3H)$
								$3.7 (3H, s, OCH_3)$
4g	$\mathrm{C}_{26}\mathrm{H}_{26}\mathrm{N}_3\mathrm{O}_5\mathrm{SCI}$	26	168	59.0	4.90	7.95	6.05	$\frac{4.4}{2.2-3.2}$ (8H, t, 4 CH ₂),
				[59.2]	[4.93]	[96.7]	[6.07]	$6.2-7.8~(13H,~m+d, aromatic,~C_4H)$
								$9.2(1\mathrm{H,d,C_3H})$
								4.4 (1H, s, OH)
4 h	$\mathrm{C}_{27}\mathrm{H}_{28}\mathrm{N}_3\mathrm{O}_5\mathrm{SCI}$	52	148	59.5	5.15	7.75	5.90	$2.2-3.2 (8H, t, 4CH_2),$
				[8.8]	[5.17]	[9/:/]	[5.91]	$6.2-7.8 \text{ (13H, m + d, aromatic, C}_4\text{H})$
								3.8 (6H, s, 20CH ₃)

TABLE IV Analytical and Spectral Data of Compounds 5a-h

(%) (°C) %C %H %N %S S2 61 140 62.5 5.20 8.75 13.0 S2 63 145 60.5 5.00 8.45 12.5 S2 63 145 60.5 5.00 8.45 12.5 S2 70 138 61.0 5.45 8.50 12.95 S2 62 168 60.5 5.00 8.45 12.5 S2 49 170 59.5 5.10 8.05 12.0 S2 53 65.4 (5.14) (8.00) (12.2) S2 65 166 60.6 5.15 7.95 12.0 S2 63 152 59.0 5.15 7.95 12.0 S2 65 166 60.0 5.35 7.75 11.5 S2 65 166 60.0 5.35 7.75 11.5		Molecular	Vield	М		% Analysis	% Analysis found(calcd.)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Compounds	formula	(%)	(O _o)	2%	Н%	%N	8%	$\mathrm{PMR}(\delta,\mathrm{ppm})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5a	$\mathrm{C}_{25}\mathrm{H}_{25}\mathrm{N}_3\mathrm{O}_3\mathrm{S}_2$	61	140	62.5	5.20	8.75	13.0	$2.2-3.2 (10H, t, 5CH_2),$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					(62.6)	(5.22)	(8.77)	(13.4)	6.2-7.8 (14H, m, aromatic)
$C_{26}H_{27}N_{5}O_{4}S_{2} \qquad 63 \qquad 145 \qquad 60.5 \qquad 5.00 \qquad 8.45 \qquad 12.5 \\ C_{26}H_{27}N_{5}O_{3}S_{2} \qquad 58 \qquad 154 \qquad 63.0 \qquad 5.45 \qquad 8.50 \qquad 12.95 \\ C_{26}H_{27}N_{5}O_{4}S_{2} \qquad 70 \qquad 138 \qquad 61.0 \qquad 5.25 \qquad 8.20 \qquad 12.5 \\ C_{26}H_{27}N_{5}O_{4}S_{2} \qquad 62 \qquad 168 \qquad 60.5 \qquad 5.00 \qquad 8.45 \qquad 12.5 \\ C_{26}H_{27}N_{5}O_{5}S_{2} \qquad 49 \qquad 170 \qquad 59.5 \qquad 5.10 \qquad 8.05 \qquad 12.0 \\ C_{26}H_{27}N_{5}O_{5}S_{2} \qquad 53 \qquad 152 \qquad 59.0 \qquad 5.15 \qquad 7.95 \qquad 12.0 \\ C_{26}H_{27}N_{5}O_{5}S_{2} \qquad 53 \qquad 152 \qquad 59.0 \qquad 5.15 \qquad 7.95 \qquad 12.0 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 5.35 \qquad 7.75 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 5.35 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 5.35 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 5.35 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.55 \qquad 7.77 \qquad 11.5 \\ C_{27}H_{29}N_{5}O_{5}S_{2} \qquad 65 \qquad 160 \qquad 160.0 \qquad $	i		;	1	1	1	1	1	9.2 (1H, s, CH)
	2 p	${ m C}_{25}{ m H}_{25}{ m N}_3{ m O}_4{ m S}_2$	63	145	60.5	2.00	8.45	12.5	$2.2-3.2 (10H, t, 5CH_2),$
$C_{26}H_{27}N_{3}O_{5}S_{2} \qquad 58 \qquad 154 \qquad 63.0 \qquad 5.45 \qquad 8.50 \qquad 12.95 \\ (63.3) \qquad (5.48) \qquad (5.52) \qquad (13.0) \\ (61.3) \qquad (5.48) \qquad (8.52) \qquad (13.0) \\ (61.3) \qquad (5.30) \qquad (8.25) \qquad (12.5) \\ (61.3) \qquad (6.53) \qquad (6.25) \qquad (12.6) \\ (60.6) \qquad (6.05) \qquad (6.05) \qquad (6.48) \qquad (12.9) \\ (60.6) \qquad (6.05) \qquad (6.05) \qquad (6.48) \qquad (12.9) \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (59.4) \qquad (5.14) \qquad (6.00) \qquad (12.2) \\ (59.4) \qquad (5.57) \qquad (7.79) \qquad (11.9) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9)$					(9.09)	(5.05)	(8.48)	(12.9)	6.2-7.8 (13H, m, aromatic)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									9.2 (1H, s, CH)
$C_{26}H_{27}N_{3}O_{4}S_{2} \qquad C_{26}H_{27}N_{3}O_{4}S_{2} \qquad C_{26}H_{27}N_{3}O_{4}S_{2} \qquad C_{26}H_{27}N_{3}O_{4}S_{2} \qquad C_{26}H_{27}N_{3}O_{4}S_{2} \qquad C_{26}H_{27}N_{3}O_{4}S_{2} \qquad C_{26}H_{27}N_{3}O_{5}S_{2} \qquad C_{26}H_{27}N_{3}O_{5}S_{2} \qquad C_{26}H_{27}N_{3}O_{5}S_{2} \qquad C_{26}H_{27}N_{3}O_{5}S_{2} \qquad C_{26}H_{27}N_{3}O_{5}S_{2} \qquad C_{26}H_{27}N_{3}O_{5}S_{2} \qquad C_{27}H_{29}N_{3}O_{5}S_{2} \qquad C_{2$	Ç	Co.H. N.O.S.	ά	154	63.0	7. 7.	02.8	19 95	$3.4(1\mathrm{H,s,OH})$
$C_{26}H_{27}N_{3}O_{4}S_{2} \qquad 70 \qquad 138 \qquad 61.0 \qquad 5.25 \qquad 8.20 \qquad 12.5 \\ (61.3) \qquad (5.30) \qquad (8.25) \qquad (12.6) \\ (25H_{26}N_{3}O_{4}S_{2} \qquad 62 \qquad 168 \qquad 60.5 \qquad 5.00 \qquad 8.45 \qquad 12.5 \\ (60.6) \qquad (5.05) \qquad (8.48) \qquad (12.9) \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9) $	8	2020277779020	3	101	(63.3)	(5.48)	(8.52)	(13.0)	$3.7 (3H. s. OCH_3)$
$C_{26}H_{27}N_{3}O_{4}S_{2} \qquad 70 \qquad 138 \qquad 61.0 \qquad 5.25 \qquad 8.20 \qquad 12.5 \\ (61.3) \qquad (5.30) \qquad (8.25) \qquad (12.6) \\ (60.6) \qquad (5.06) \qquad (8.48) \qquad (12.9) \\ (60.6) \qquad (5.05) \qquad (8.48) \qquad (12.9) \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9) $									6.2-7.8 (13H, m, aromatic)
$C_{26}H_{27}N_{3}O_{4}S_{2} \qquad 70 \qquad 138 \qquad 61.0 \qquad 5.25 \qquad 8.20 \qquad 12.5 \qquad (61.3) \qquad (61.3) \qquad (6.30) \qquad 8.45 \qquad 12.5 \qquad (60.6) \qquad$,		í	0		1	(1	9.2 (1H, s, CH)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ર્	$\mathrm{C}_{26}\mathrm{H}_{27}\mathrm{N}_{3}\mathrm{O}_{4}\mathrm{S}_{2}$	0/.	138	61.0	5.25	8.20	12.5	1.3 (3H, s, CH ₃),
$C_{25}H_{25}N_3O_4S_2 \qquad 62 \qquad 168 \qquad 60.5 \qquad 5.00 \qquad 8.45 \qquad 12.5 \\ (60.6) \qquad (5.05) \qquad (8.48) \qquad (12.9) \\ (50.6) \qquad (5.05) \qquad (8.48) \qquad (12.9) \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9) \\ (60.1) \qquad (6.57) \qquad (7.79) \qquad (7.79) \qquad (11.9) \\ (60.1) \qquad (6.57) \qquad (7.79) \qquad (7.79) \qquad (7.79) \qquad (11.9) \\ (7.79) \qquad ($					(61.3)	(5.30)	(8.25)	(12.6)	$2.2-3.3 (10H, t, 5CH_2),$
$C_{25}H_{25}N_3O_4S_2 \qquad 62 \qquad 168 \qquad 60.5 \qquad 5.00 \qquad 8.45 \qquad 12.5 \\ (60.6) \qquad (5.05) \qquad (8.48) \qquad (12.9) \\ (50.4) \qquad (5.05) \qquad (8.48) \qquad (12.9) \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.75) \qquad (11.9) \\ \end{array}$									6.7-8.5 (13H, m, aromatic)
$C_{26}H_{27}N_{3}O_{5}S_{2} \qquad 49 \qquad 170 \qquad 59.5 \qquad 5.10 \qquad 8.05 \qquad 12.0 \\ C_{26}H_{27}N_{3}O_{5}S_{2} \qquad 53 \qquad 152 \qquad 59.0 \qquad 5.15 \qquad 7.95 \qquad 12.0 \\ C_{26}H_{27}N_{3}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 5.35 \qquad 7.75 \qquad 11.5 \\ C_{27}H_{29}N_{3}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 5.35 \qquad 7.75 \qquad 11.5 \\ C_{27}H_{29}N_{3}O_{5}S_{2} \qquad 65 \qquad 166 \qquad 60.0 \qquad 6.35 \qquad 7.77 \qquad (7.79) \qquad (11.9)$	10	Co. Hor No O.S.	69	168	60 5	5 00	8 45	19.5	$9.2(1\mathrm{H,s,CH}) \ 2.2{-}3.2(10\mathrm{H}\pm5\mathrm{CH_{\odot}})$
$C_{26}H_{27}N_3O_5S_2 \qquad 49 \qquad 170 \qquad 59.5 \qquad 5.10 \qquad 8.05 \qquad 12.0 \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.75) \qquad (11.9)$)	7~+06:-67670	ļ)	(9 09)	(5.05)	(8.48)	(19.9)	6 8 8 9 (13H m aromatic)
$C_{26}H_{27}N_3O_5S_2 \qquad 49 \qquad 170 \qquad 59.5 \qquad 5.10 \qquad 8.05 \qquad 12.0 \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.75) \qquad (11.5) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9)$									9.2 (1H. s. CH)
$C_{26}H_{27}N_{3}O_{5}S_{2} \qquad 49 \qquad 170 \qquad 59.5 \qquad 5.10 \qquad 8.05 \qquad 12.0 \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.75) \qquad (11.5) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9)$									3.5 (1H, s, OH)
$(59.4) (5.14) (8.00) (12.2)$ $C_{26}H_{27}N_3O_5S_2 \qquad 53 \qquad 152 \qquad 59.0 \qquad 5.15 \qquad 7.95 \qquad 12.0$ $(59.4) (5.14) (8.00) (12.2)$ $C_{27}H_{29}N_3O_5S_2 \qquad 65 \qquad 166 \qquad 60.0 \qquad 5.35 \qquad 7.75 \qquad 11.5$ $(60.1) (5.57) (7.79) (11.9)$	2 t	$\mathrm{C_{26}H_{27}N_{3}O_{5}S_{2}}$	49	170	59.5	5.10	8.05	12.0	$2.2-3.2(10H, t, 5CH_2),$
$C_{26}H_{27}N_3O_5S_2 \qquad 53 \qquad 152 \qquad 59.0 \qquad 5.15 \qquad 7.95 \qquad 12.0 \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9)$					(59.4)	(5.14)	(8.00)	(12.2)	6.2-7.8 (12H, m, aromatic)
$C_{26}H_{27}N_3O_5S_2 \qquad 53 \qquad 152 \qquad 59.0 \qquad 5.15 \qquad 7.95 \qquad 12.0 \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2)$ $C_{27}H_{29}N_3O_5S_2 \qquad 65 \qquad 166 \qquad 60.0 \qquad 5.35 \qquad 7.75 \qquad 11.5 \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9)$									9.2 (1H, s, CH)
$C_{26}H_{27}N_3O_5S_2 \qquad 53 \qquad 152 \qquad 59.0 \qquad 5.15 \qquad 7.95 \qquad 12.0 \\ (59.4) \qquad (5.14) \qquad (8.00) \qquad (12.2) \\ (60.1) \qquad (5.57) \qquad (7.79) \qquad (11.9)$									$3.7 (3H, s, OCH_3)$
$C_{27}H_{29}N_3O_5S_2$ 65 166 60.0 5.35 7.75 11.5 (60.1) (5.57) (7.79) (11.9)	ğ Di	Co.HorN.O.S.	553	152	59.0	7. 7.	7.95	12.0	$4.4\ (1H, s, OH)$ 2.9–3.2 (10H + 5CHs)
${ m C_{27}H_{29}N_3O_5S_2}$ 65 166 60.0 5.35 7.75 11.5 (60.1) (5.57) (7.79) (11.9)	0	7 - 0 - 0 - 17 - 07 -			(59.4)	(5.14)	(8.00)	(12.2)	6.2–7.8 (12H, m, aromatic)
${ m C_{27}H_{29}N_3O_5S_2}$ 65 166 60.0 5.35 7.75 11.5 (60.1) (5.57) (7.79) (11.9)									9.2 (1H, s, CH)
$C_{27}H_{29}N_3O_5S_2$ 65 166 60.0 5.35 7.75 11.5 (60.1) (5.57) (7.79) (11.9)									$3.7 (3H, s, OCH_3)$
(60.1) (5.57) (7.79) (11.9)	<u>.</u> 4	S O N H	ŭ	188	0 08	и с и	г. П	<u>-</u>	4.4 (1H, s, OH)
(6.11) (7.79) (11.9)	no	C2711291N3C5S2	3	100	00.00		01.1	11.0	2.2-3.2 (1011, t, JOI12),
9.2()					(00.T)	(10.6)	(61.13)	(11.9)	6.2-1.8 (12H, m, aromatic)
0.00									9.2 (IH, S, CH)
									5.8 (6H, S, ZUCH ₃)

(1) by the reported method. ¹⁶ It can be hydrolyzed to 4-(4'-sulphanilyl)-1-phenyl piperazine (2) by ethanolic HCl. ¹⁷ It was characterized by elemental analysis, IR spectral studies, and NMR spectral studies. The IR spectra of the compound (2) show the bands at 3390 and 3410 cm⁻¹ for-NH₂ group.

This hydrolyzed product (2) was dissolved in ethanol and was reacted with aromatic aldehydes in the presence of piperidine to yield Schiff bases (3a-h). These Schiff bases (3a-h) were then characterized by the elemental analysis, IR spectral studies, and NMR spectral studies. The IR spectra of Schiff bases show the prominent band at 1630 cm⁻¹ for the azomethine group.¹⁸

These Schiff bases on cyclo-condensation reaction with chloro acetyl chloride afford 2-azetidinone (**4a-h**) and with thio-glycolic acid afford 4-thiazolidinone (**5a-h**) respectively. The structures of both these compounds (**4a-h**) and (**5a-h**), respectively, have been confirmed by elemental analysis, IR spectral studies, and NMR spectral studies. These compounds shows the band at 1690 cm⁻¹ for cyclic >C=O group. ¹⁸ All the compounds show the NMR signals for different kinds of protons at their respective positions. The data are shown in Tables III and IV.

The antibacterial activity of both the series (**4a-h**) and (**5a-h**), respectively, have been carried out against some strain of bacteria. The results show that the prepared compounds are toxic against the bacteria. The comparison of the antibacterial activity of these compounds with penicillin and sulphanilamide shows that these compounds have almost similar activity.

The C,H,N,S analysis of all the compounds of the series are presented in Tables III and IV. The values are consistent with their predicted structure (Scheme 1).

REFERENCES

- R. G. Shepherd, Sulfanilamides and Other p-Aminobenzoic Acid Antagonists, Medicinal Chemistry, edited by A. Burger (Wiley Interscience, Toronto, 1969, vol. 1, p. 255.
- [2] M. A. Krupp and M. J. Chatton, Current Medical Diagnosis and Treatment (Large Medical Publications, California, 1980).
- [3] R. C. Sharma and D. Kumar, J. Ind. Chem. Soc., 77, 492 (2000).
- [4] H. D. Joshi, A. R. Sawale, R. D. Ingle, and R. A. Mane, Ind. J. Chem., 39, 967 (2000).
- [5] V. S. Ingle, A. R. Sawale, R. D. Ingle, and R. A. Mane, Ind. J. Chem., 40, 124 (2001).
- [6] P. Kagathara, T. Upadhyay, R. Doshi, and H. H. Parekh, Indian J. Heterocycl. Chem., 10, 9 (2000).
- [7] N. Matsui, Jpn. Kokai Tokkyo JP, 07,2000,652; Chem. Abstr., 132, 641094 (2000).
- [8] K. R. Desai, Asian J. Chem. Abstr, 132, 279145 (2000).
- [9] K. M. Thaker, et al., Ind. J. Chem., 42B, 1544 (2003).

- [10] W. E. Coyne, Medicinal Chemistry, edited by A Burger (Wiley Interscience, New York, 1970).
- [11] A. Abdle-Magd, et al., Ind. J. Chem., 18B, 467 (1979).
- [12] Goel Yogesh, M. S. At Thebeiti, and M. F. El-Zohry, Ind. J. Chem., 37B(8), 804 (1998).
- [13] M. Kidwai, R. Bala, and K. Kumar, Indian J. Pharm. Sci., 57, 252 (1995).
- [14] a) A. L. Barry, The Antimicrobial Susceptibility Test: Principle and Practices, 4th ed., edited by Illuslea and Feger (Philadelphia, 180–193 (1976)); b) Biol. Abstr., 64, 25183 (1977).
- [15] A. I. Vogel, A Textbook of Practical Organic Chemistry, 5th ed., Pearson Education, Ltd., Singapore, p. 883 (2004).
- [16] I. Bernstain and L. R. Rothstein, J. Am. Chem. Soc., 66, 1886 (1994).
- [17] A. I. Vogel, A Textbook of Practical Organic Chemistry, 5th ed., Pearson Education, Ltd., Singapore, p. 883 (2004).
- [18] L. J. Bellamy, The Infrared Spectra of Complex Molecules (John Wiley and Sons, New York, 1954).